Бинарные отношения и их свойства
June 23, 2013
Широкий спектр отношений на примере множеств сопровождается большим числом понятий, начиная с их определений и заканчивая аналитическим разбором парадоксов. Разнообразие обсуждаемого в статье понятия на множестве бесконечно. Хотя, когда говорят про двойственные типы, под этим подразумеваются бинарные отношения между несколькими величинами. А также между объектами или высказываниями.
Как правило, бинарные отношения обозначаются символом R, то есть, если xRx для любого значения x из поля R, такое свойство называют рефлексивным, в котором x и х – это принятые объекты мысли, а R служит знаком о том или ином виде взаимосвязи между индивидами. В то же время если выражать xRy® или yRx, то это говорит о состоянии симметрии, где ® — знак импликации, похожий на союз «если. то. «. И, наконец, расшифровка надписи (xRy Ùy Rz) ®xRz расскажет о транзитивной взаимосвязи, причём знак Ù – это конъюнкция.
Бинарное отношение, которое бывает одновременно рефлексивным, симметричным и транзитивным, именуется взаимосвязью эквивалентности. Отношение f – это функция, и из <х, у> Î f и <х, z> Î f вытекает равность y=z. Простая бинарная функция может быть легко применима к двум несложным аргументам, расположенным в определённом порядке, и лишь в данном случае она предоставляет ей значение, направленное этим двум выражениям, взятым в конкретном случае.
Следует говорить, что f отображает x на y, если f служит функцией с зоной определения x и зоной значений y. Однако когда f экстраполирует x на y, и y Í z, то это приводит к тому, что f показывает x в z. Простой пример: если f(x)=2x справедливо для достоверно любого целого х, то говорят, что f отображает знаковое множество всех известных целых чисел во множество тех же целых, но на этот раз чётных чисел. Как уже упоминалось выше, бинарные отношения, которые одновременно рефлексивны, симметричны и транзитивны, являются взаимосвязями эквивалентности.
Рассмотрим заявленные свойства бинарных отношений подробнее. Рефлексивность — это одна из характеристик некоторых связей, где каждый элемент исследуемого множества пребывает в данной равности сам себе. Например, между числами а=с и а³ с — рефлексивные связи, поскольку всегда а=а, с=с, а³ а, с³ с. В то же время отношение неравенства а>с — антирефлексивно из-за невозможности существования неравенства а>а. Аксиома этого свойства кодируется знаками: aRc® aRa Ù cRc. здесь символ ® означает слово «влечёт» (или «имплицирует»), а знак Ù – выступает союзом «и» (или конъюнкцией). Из этого утверждения следует, что в случае истинности суждения aRc также истинны и выражения aRa и cRc.
Транзитивное множество — это такое свойство, при котором выполняется следующее требование: у Î х, z Î y ® z Î x, где ® выступает знаком, заменяющим слова: «если. то. «. Вербально читается формула таким образом: «Если у зависит от х, z принадлежит у, то z также зависит от х».